Optical architectures for compressive imaging.
نویسندگان
چکیده
We compare three optical architectures for compressive imaging: sequential, parallel, and photon sharing. Each of these architectures is analyzed using two different types of projection: (a) principal component projections and (b) pseudo-random projections. Both linear and nonlinear reconstruction methods are studied. The performance of each architecture-projection combination is quantified in terms of reconstructed image quality as a function of measurement noise strength. Using a linear reconstruction operator we find that in all cases of (a) there is a measurement noise level above which compressive imaging is superior to conventional imaging. Normalized by the average object pixel brightness, these threshold noise standard deviations are 6.4, 4.9, and 2.1 for the sequential, parallel, and photon sharing architectures, respectively. We also find that conventional imaging outperforms compressive imaging using pseudo-random projections when linear reconstruction is employed. In all cases the photon sharing architecture is found to be more photon-efficient than the other two optical implementations and thus offers the highest performance among all compressive methods studied here. For example, with principal component projections and a linear reconstruction operator, the photon sharing architecture provides at least 17.6% less reconstruction error than either of the other two architectures for a noise strength of 1.6 times the average object pixel brightness. We also demonstrate that nonlinear reconstruction methods can offer additional performance improvements to all architectures for small values of noise.
منابع مشابه
From modeling to hardware: an experimental evaluation of image plane and Fourier plane coded compressive optical imaging
Computational imaging based on compressed sensing (CS) has shown potential for outperforming conventional techniques in many applications, but challenges arise when translating CS theory to practical imaging systems. Here we examine such challenges in two physical architectures under coherent and incoherent illumination. We describe hardware alignment protocols that can be used to optimize syst...
متن کاملEvaluation of computational endomicroscopy architectures for minimally-invasive optical biopsy
We are investigating compressive sensing architectures for applications in endomicroscopy, where the narrow diameter probes required for tissue access can limit the achievable spatial resolution. We hypothesize that the compressive sensing framework can be used to overcome the fundamental pixel number limitation in fiber-bundle based endomicroscopy by reconstructing images with more resolvable ...
متن کاملChallenges in Optical Compressive Imaging and Some Solutions
The theory of compressive sensing (CS) has opened up new opportunities in the field of optical imaging. However, its implementation in this field is often not straight-forward. We list the implementation challenges that might arise in compressive imaging and present some solutions to overcome them.
متن کاملA Compressive Superresolution Display
In this paper, we introduce a new compressive display architecture for superresolution image presentation that exploits co-design of the optical device configuration and compressive computation. Our display allows for superresolution, HDR, or glasses-free 3D presentation. OCIS codes: 120.2040, 080.1753.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied optics
دوره 46 22 شماره
صفحات -
تاریخ انتشار 2007